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Introduction

“Model order reduction (MOR) is a methodology for reducing the computational
complexity of mathematical models in numerical simulations. [Wikipedia]

Here (1) we will give an overview of the data-driven modeling framework
known as the Loewner framework and (2) we will discuss issues related to
the sensitivity of the resulting models.

The overall problem
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Dynamical systems

ui() — _ — ()
w() — | = { X(1) = fx(1), u(t) a0

y(t) = h(x(t), u(t))

We consider internal equations
T Ex(f) =1(x(), u(t)), y(t) = h(x(t), u(1))

with internal variable x(-) of dimension n> m,p.
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Model reduction via projection

Given is Ex(1) = 1(x(1), u()) or Ex(t) = Ax(t) + Bu(t)

y(t) = h(x(t), u(t)) y(t) = Cx(t) + Du(?)

Common framework for (most) model reduction methods:

Petrov-Galerkin projective approximation.
Choose k-dimensional subspaces, Vx = Range(Vx), Wi = Range(Wy) C C".
Find v(t) = VkX,(t) € Vi, Xk € CK, such that

EV(f) — AV(f) —Bu(f) L Wy =

W (EVikxi (1) — AVixk(t) —Bu(t)) =0, yk(t) = CVixk(t) + Du(t),

Reduced order system

Ex = WiEV, A, =W;AV,, B, =W;B, Cj,=CV,.



The quality of the reduced system depends on the choice of V, and W.

n

k| Ex, A ||Bk

[ c |p]

Model order reduction (MOR) seeks to reduce the complexity of large-scale dynamical
systems by approximations of much lower dimension that produce nearly the same
input/output response characteristics.

In the sequel we will concentrate on interpolatory model reduction methods and in particular
on the Loewner framework which is data-driven.



Motivating Examples | » Model reduction of an artificial fishtail.

e The autonomous soft robotic fish was developed at MIT and Worchester Polytechnic.
The fish is novel because it is has a soft body and has a new fluidic actuation system.

A.D. Marchese, C.D. Onal, and D. Rus, Autonomous soft robotic fish capable of escape
maneuvers using fluidic elastomer actuators, Soft Robotics, vol. 1, pages 75-87, (2014).

o Mathematical model. Constitutive equations (elasticity):
pd2s(t,z) =V -o(s(t,2)), t >0, ze Q, where s(0,2) = s¢(2),

where s(t, z) is the first-order displacement tensor, o (t, z) is the stress tensor and Q is the
domain of interest.
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By appropriate discretization of this partial differential equation, we obtain a second-order
finite-dimensional system of the form

M (1) + ExX(t) + Kx(t) = Bu(t), y(t) = Cx(t),

where x is a discretized version of s, and the damping E is proportional. Goal: build a
controller, for the tail. The main issue at this stage is the resulting complexity, namely:

M, E KeRV*N Be RN, CeR¥*N, where N =779, 232.

o x10° spy(M) 0 x10° spy(K)
1 1
2 2
3 3
\ . \
5 2 . 5
6 6
r 7
0 1 X 3 4 5 6 ] 0 1 2 3 4 5 6 7
nz = 20130282 %10° nz = 60326710 %10°

D. Siebelts, A. Kater, and T. Meurer, Modeling and motion planning for an artificial fishtalil,
IFAC PapersOnLine, vol. 51, pages 319-324 (2018).
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o Model order reduction

J. Saak, D. Siebelts, and S.W.R. Werner, A comparison of second-order model order
reduction methods for an artificial fishtail, Automatisierungstechnik, vol. 67, pages 648-667
(2019).

Procedure. Choose n = 500 frequencies on the imaginary axis:
omega = logspace(—1, 3,500). Subsequently compute the 500 frequency response values:

—1
H(s)=C<32M+sE+K> B e C3*' where s=jwy, k=1,---,500.

Remark: this computation takes about 2 days.

Together with the complex conjugate frequencies and transfer function values build the
Loewnere quadruple:

L, Ls € Rnxn7 Ve ]R", W e Ran_

W Frequency Responses
ol




» Accelerating the commercial aircraft design and certification cycle.

e The design and optimization of modern commercial aircraft typically requires accurate
predictions of airframe response to diverse operational loads, which may include for
example, wind gusts, turbulence, wake vortices, asymmetric thrust, and vibration.

e This must be done repeatedly at different stages of the design process.

e High fidelity reduced models play a significant role in reducing overall simulation time by
providing cheap and accurate surrogates for different subsystems.

e The data-driven Loewner approach is well suited to this purpose since the construction of
reduced models can be done independently of the availability of analytical system models.

e The system input-output response was measured at 421 frequencies.
e The system input is a distributed gust disturbance.
e The system output is the lift and pitch moment at 44 locations on the wing and tail.

e The full-order system has 5 x 10° fluid degrees of freedom and 2 x 10° structural
degrees of freedom.

e The reduced dynamical system has 30 degrees of freedom.

e The relative deviation between the reduced system response and the full-order system
response is never larger than 0.35%
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Original (full-order) frequency response

merss. 0 e

pour MATLAB®
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Deécouvrez ses fonclionnaltées »
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Matlab Loewner Toolbox
C. Poussot-Vassal & P. Vuillemin

Dassault business jet test
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» Microstrip device.

Microstrip transmission lines are a common way to connect two devices. They consist of two
thin parallel (metal) strips, mounted on the same dielectric substrate.

Microstip devices are described by S-parameters (Scattering parameters).

stoa

1.900000000 Gz

VNA (Vector Network Analyzer) and VNA screen showing the magnitude of the
S-parameters for a 2 port device.
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The Loewner matrix

Given:
row array (wj,vj), j=1,---,4q,
columnarray (A, w;), i=1,--- kK,

the associated Loewner matrix is:

Vi—Wy Vi—Wg
1= A K1 — A
L= : 2, : eCaxk
Vg—Wy Vg—W
Hg— A Hg— Ak

If w; =g(x), v; = g(y;), are samples of g:

Main property. Let L be as above.
Then k,q > degg = rankL = degg.

Karel Lowner (1893 - 1968)

Ch. Loewner

e Born in Bohemia
e Studied in Prague under Georg Pick
e Emigrated to the US in 1939

e Seminal paper:
Uber monotone Matrixfunctionen,
Math. Zeitschrift (1934).
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Rational interpolation and the Loewner matrix

e Lagrange basis for space of polynomials of degree at most n.

Given distinct \; e C,i=1,--- ,n+ 1, define

q/(S) 0= I'I,#,‘(s—)\k), i=1,---,n+1.

e For given constants «j, wj, i = 1,--- ,n+ 1, consider
n+1
g—w
; =0, a;#0.
; Qj s— N\ aj #

e Solving for g we obtain

Zn+1 02‘”1'
g(S): i=1 s—X;

n+1
i S=X;

o = g()‘l) = W;.
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The free parameters «;, can be specified so that
) =y j =1, 1,

where (p), V), i # pj, are given. For this to hold L.c = 0, where

Vi—Wy . Vi—Wpii
K= H1—Anid @)y
c . - 1 c 1
L= : . ; eCrx(ml) o= : e C®,
Vr—Wy . Vr—Wpiq Qnit
Hr—Xq Br—Ant1 m
L: Loewner matrix with
row array: (j,vj), j=1,---,r, and
column array: (\,w;), i=1,--- n+4+1.

Main property

Let L be a p x k Loewner matrix with p, g > degg. Then .

e A.C. Antoulas and B.D.O. Anderson, On the scalar rational interpolation problem, IMA
Journal of Mathematical Control & Information, vol. 3, pages 61-88 (1986).
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Reference

Y. Nakatsukasa, O. Sete, and L.N. Trefethen, The AAA algorithm for rational interpolation.

THE AAA ALGORITHM FOR RATIONAL APPROXIMATION

YUJI NAKATSUKASA*, OLIVIER SETE!, AND LLOYD N. TREFETHEN?

For Jean-Paul Berrut, the pioneer of numerical algorithms based on
rational barycentric representations, on his 65th birthday.

Abstract. We introduce a new algorithm for approximation by rational functions on a real
interval or a set in the complex plane, implementable in 40 lines of Matlab. Even on a disk or interval
the algorithm may outperform existing methods, and on more complicated domains it is especially
competitive. The core ideas are (1) representation of the rational approximant in barycentric form
with interpolation at certain support points, (2) greedy selection of the support points to avoid
exponential instabilities, and (3) least-squares rather than interpolatory formulation of the overall
problem. The name AAA stands for “aggressive Antoulas—Anderson” in honor of the authors who
introduced a scheme based on (1). We present the core algorithm with a Matlab code and eight
applications and describe variants targeted at problems of different kinds.

Key words. rational approximation, barycentric formula, analytic continuation, AAA algo-
rithm, Froissart doublet

AMS subject classifications. 41A20, 65D15

Revised version: aggressive — adaptive
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The Loewner framework

Given: right data: (A\j; rj,w;), i=1,---  k, and left data: (;Lj;£77v7), Ji

simplicity all points are assumed distinct).

1,--,q (for

Problem: Find rational p x m matrices H(s), such that: | H(Aj)rj = w; |, | £7H(y;) = Vil

Right data:
A
A= % & ELRL
Ak
Left data:
1
M= cCI*q L=
2%}

R= [r1 rp, --- rk] ECka’

W= [W1 Wo o Wk] E (CpXk,
3 Vi
© |eco® v=| : | ecom
£ Vi
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State-space representation: the Loewner matrix pair

Recall data: H(\j)ri = w;, Z]’!‘H(uj) =V}

The Loewner matrix L € CI%X js:

VT —iwy Vi — L3 Wy
B1—A1 1= Ak
L= .
v;r17£3w1 v;rkfé;wk
K= Hg—Ak

L satisfies the Sylvester equation

‘ILAfM]L=VRfLW‘

If H(s) = C(sE — A)~'B, is given:

=

X, Y: gen. reach./observ. matrix =

- =

x; == (ME — A)T'Br;, y; = 4;C(1E — A)~!

The shifted Loewner matrix L € C9%X js:

VI = Wy AV T — LT Wi

H1— A 11— Ak
Le = . .

,uqvgn —£;w1A1 ;qugrk—lswk)\k

Hg—M o Hq— Ak

LLs satisfies the Sylvester equation

LsA — MLs = MVR — LWA

LLs can be factored as

= |Ls =—-YAX




Construction of Models or Learning from the data
o If det(xL —ILs) # 0, x € {\;} U {p;}, then

E= L A=-Ls B=V, C=W

is a minimal interpolant of the data, i.e., H(s) interpolates the data:

| H(s) = W(Ls —sL)~'V|

o Otherwise, if the numerical rank . = k, compute the rank revealing SVD:

’ L= YIX* ~ Y, EX: ‘

Theorem. A realization [E, A, B, C], of an approximate interpolant is given as follows:

E=—Y;LX;, A=-Y/LX,, B=VYiV, C=WX,.
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The Loewner Algorithm (simple version)

1.

2.

Consider given (frequency domain) measurements (s;, ¢;), i=1,...,N.
Partition the measurements into 2 disjoint sets

frequencies :  [s1,---,sn] = [M,ccc A e, kgl K+Hg =N,

values :  [p1,--,on] = [wi,oo Wil [vi,oovg]l = W, VT

Construct the Loewner pencil:

j=1, .k j=1,- .k

Vi — W BiVi — AW
L= /\ L L= = .
Hi= ) iz, q Hi= A )izt q

It follows that the raw model is: (W, L, Lg, V).

Compute the rank revealing SVD: L ~ YZX* (X € R™%").

The reduced model (C.E, A, B) is obtained by projecting the raw model
(W,L,Ls, V):

C=WX, E=_Y*LX, A= _Y*LsX, B = Y*V.

Reference: S. Lefteriu and A.C. Antoulas: A New Approach to Modeling Multiport
Systems from Frequency-Domain Data, IEEE Trans. CAD, 29: 14-27 (2010).
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Example: a discretized Euler-Bernoulli beam

e System of order n = 348 (obtained after discretization) representing a clamped beam.

e \ = 60 frequency response measurements, Sx = jwy, With wy, € [—1,—0.01] U [0.01, 1].
e Construct 30 x 30 Loewner pencil and Y, X € R39%'2 from the SVD.

e Project to get reduced model of order r = 12.

10
10*
108 10°
107
10° 10°
2
10% 107" 10° 10’ 10° % 10 20 30
10 ofs -
1 5
10° ‘o
0
.°D|
10° - ’
—10fo . -
107 10" 10° 10' 10° 06 -05 -04 -03 -02 -01 0
(1,1) Original and data (1,2) Singular values of L.

(2,1) Original & reduced FR | (2,2) Poles original & reduced
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Reduced model from frequency response measurements
1001 S-parameter measurements between 10-18 GHz (CST).

Data frequency response [|S; [, i,/ = 1,2.

e
A

Data two singular values.

‘Sigma plot: freqe [1,1.8/e10, max value 1.0013

s12

ji

Singular values of 1001 x 1001 Loewner matrix Singular-value fit of model k = 72
Singular valuos o ugmented Lomwer matrices

‘Sigma plot. Loewner model inred, k = 72

Mk

S-parameter-error: € [10~°, 10— %] Two singular values of model: w € [0, 10THz]
o P T T
| \
’ \
|1 \
. — \
" \
| . \
A
|
]

\
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The issue of sensitivity

A general factorization of the Loewner pencil and its consequences.

Given the system ¥ and a minimal realization thereof:
¥ = (C,E,A,B) € RPXM x RMXM 5 RMXM 5 RT*M,

let the associated resolvent be denoted by ®(s) = (SE — A)~', and the transfer function by
H(s) = C®(s)B. Next, consider the Loewner data below and the rsulting Loewner

quadruple:
(M, L7, vT)  and (A, R, W) = (W, L, Ls, VT)
— — —

left data:gxq,qxp,gqxm right data:kx k,mxk,px k Loewner quadruple: pxk,qxk,qxk,gxm

Let C; and Cg be the associated left/right rational Krylov projectors:

£fCo(u1)
¢ = : €CT" Cr=[ ®(A\)Bry - ®(\)Brc | € C™K,
£§C®(11q)

assumed to satisfy the condition that C;Cg has full rank.
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It readily follows that the following Sylvester equations are satisfied:

MC,E—-C,A=L"C and ECgA-ACgr=BR

Multiplying the former equation by Cg on the right and the latter by C; on the left we obtain

~—— ~—~

MCLECRchACF;:LT-CCH and C,ECRN—-C, ACr=C/B-R
—— N—— —— ——
L Ls W L Ls \%

which yield the well known relationships: ML —Ls =LW and LA —Ls=VR.
Appropriate addition/subtraction of these equations yields in turn the Sylvester equations
satisfied by the Loewner pencil:

LA — ML =VR — LW and LsN — MLs = (MV)R — L(WA).

Thus the following factorizations hold:

L=C,ECr, Ls=C ACr, W=CCgr, V=(/B
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Lemma. The above factorizations lead to three conclusions.

q T a vir—elw;
> (a) (s, L) is the Loewner pencil, i.e. (L), ; = ’/\’fé’
: J—Hi

(Le); ;= vl —elwix;
v sty T N—wi

Thus the rank of LL is equal to the McMillan degree n of the system X.
> (b) The factorizations are rank revealing.
> (c) An explicit generalized EVD (eigenvalue decomposition) of the Loewner pencil

(Ls, L) results, namely

V=Chiv and W =w'c/.

Proof.We will show part (€). Let (A, v, W) be a right/left eigenvalue/eigenvector triple of (A, E).
Then V = C;v, where the exponent + denotes the Moore-Penrose pseudo inverse, is the right
eigenvector of the Loewner pencil (Ls, L), corresponding to the eigenvalue \:

LsV = CLACRV = CLACF;CJF;V = CLAV = /\CLEV = )\CLECRC;V = )\CLECF;CF;V = ALv.
Similarly for the left eigenvectors associated with the eigenvalues of (LLs, L). ]

Remark.The fact that rational Krylov projections are associated with the Loewner pencil, brings two
issues into the picture: (1) the fact that the rank of L is equal to the McMillan degree of the
undelying system and (2) the fact that an explicit GEVD (generalized eigenvalue decomposition) of
the projected pencil results. ]
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Basics of perturbation theory
Consider the generalized eigenvalue problem of the pencil (A, E):

Av = cEv, WA =0ow"E,
where o is assumed to be a simple eigenvalue. An e-perturbation of the system yields

(A+eAp)(v+ev ... = (o4+eocMD 4. )E+eAg)(v+evD 4..0),

Wl +ew® 4. ) A+eAn) = (0+eo®+ )W +ew® 4. )(E+ eAg).
Retaining only the first-order terms yields (A — cE)v(") = (¢("E + 0 Ag — Ap)v. We wish to
find an expression for o(1), which measures the first-order sensitivity of o. Towards this goal
we multiply this equation on the left by the corresponding left eigenvector w:

wT (A - cE)W) =wT (¢ E 4 cAE — Ap)V =

(1) — WTAAV = UWTAEV w (AA = O'AE)

w’Ev w'Ev
If we now assume that ||Aal| = [|A]|, || Agl| = ||E||, we obtain
wi (||A E|)|lv v
M) < lIwil I |I+T\0H| DIV _ oo, . IWIL- IV
|w'Ev| W Ev|
N——
sens,

If E =1, we obtain the well known result: ggis— = cos Z(v, w).
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The SISO case

Let an underlying linear siso (m = p = 1) system of dimension n be represented by means
of its partial fraction decomposition:

H(s):%:z i

;
= ST

where 0 # ~; € C, for all /.

To this system we associate a Loewner quadruple (W, Ls, L, V) constructed by means of the
left interpolation points y;, i = 1,- - -, g, the right interpolation points ;, j = 1,--- , k
(assumed distinct), the left values V; = H(y;) and the right values W; = H(};), where
g,k > n. WithR = 1;, L = 1, the Loewner pencil satisfies the Sylvester equations:

LA — ML = VR — LW, LsA — MLs = (MV)R — L(WA).

In the sequel we will denote the poles of the system by: M = diag [71, - ,m] € C™".
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Given two sets of mutually distinct complex numbers o, i =1,--- ,k,and B, j=1,--- , p,
we define the associated Cauchy matrix:

1. 1
a1 —B34 a1 —PBp

Cop = : : € CrxP,

1 L 1
a,—PB4 O‘m_ﬂp

This Cauchy matrix satisfies the Sylvester equation:

CasA—BCyp :1,61;, where A =diag[ay, -+ ,ax], B=diag[B1, -, B

Lemma. In the above setting, the relationships below hold true, where the matrix containing

the residues ~; is denoted by: I' = diag [y1,- -, ¥n]:
W = 17T Cn €CxK
L = rC.,» € CIxk
g = Nrc,, e caxk
Vo = ri, ¢ coxi.

e P. Amstutz, Une méthode d’interpolation par les fonctions rationelles,
Annales des Télécommunications, tome 22, Mars-Avril 1967, pages 62-54.
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The proof is based on the fact that because the simulateous factorization of the Loewner
pencil is rank revealing, the Moore-Penrose generalized (or pseudo-) inverse of the (in
general) rectangular matrix

®(s) =SL—Ls = Cpuyr [ST =T M| Cprn € CI¥K,

gxn nxn nxk
is as follows:
—1
oMP(s) = ¢z, (c,,,kc;,x) [sT— TR~ (C5  Cun) ' CL €CHX9 =
n .
WOM(S)V = [y, syl (dlag [s—mr, -+, s—mal) " 1n = > T = H(s).
e,

i=1

Thus, although the Loewner pencil is rectangular and/or singular, using the Moore-Penrose
pseudo-inverse, we recover the original system, without the need of an explicit projection.
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The sensitivity formula.

From the previous section we can now insert the expressions for v and w as a function of the
Cauchy matrices C; = C,,» and Cgr = C x. In addition, if the original system realization is
as above, the sensitivity of the i pole, is up to a constant, given by

T T
e/l lCt seill  llef Il lICT el

T

;= =
le/Ct R LC el il

We notice that this expression depends on the interpolation points chosen, through the
Cauchy matrices, as well as the on the size of the corresponding residue; hence the
condition numbers of these matrices and the residue are relevant for determing sens;.

29/49



Consequences: eigenvalue sensitivity

1. GEVD of the Loewner pencil. The right eigenvector of the Loewner Matrix Pencil (Ls, L)
corresponding to the eigenvalue 7, is

qr = (CH)+ef7

where + is the notation of pseudo-inverse and e is the unit vector whose r' entry is 1 while
the rest are 0. Similarly, the left eigenvector corresponding to the same eigenvalue is

pr = (CLT )rer.
If the system is SISO, then the eigenvector of Loewner matrix pencil can be also obtained by
g =(C )" er pr=(Cln)"er

Here the difference of the two expressions is the norm of the eigenvector.

2. Sensitivity of the poles for Loewner pencil. For any matrix pencil (A, E), under the
perturbation of A = A + N4 and E = E + Ng, the first order approximation of the eigenvalue
perturbation 67 is

pT (Na—7Ng)g
p"Eq

Similarly, for the Loewner pencil if the perturbated matrices are L=L+N,
Ls = Ls 4+ Ns, the first order approximation of the eigenvalue perturbation = is

P’ (Ns —7N)g
p’Lq

om =

om =
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A bound for pole sensitivity (Gosea). It can be shown that:

_q7 _ [en _ | diag(p) (=l —M)VC, xq
omr =d'e, where e = [EJ ,andd = [diag(q)(frl ~ ANWCp|

The following sequence of inequalities holds

lldllz < [[diag(p)(wl — M)VC,, xqll2 + [Idiag(q)(ml — A)WC .pll2
< lIplloo max|m; — pj| max [H(u)llICp All2llall2 + llqllec max |7 — Ajl max |HADIIICx, . lI21lPll2
——— ! I ~— | i
<llpll2 <llqll2

< pll21211Cyu o[ max I — gl max | ()| + max [ — i max [HO)
since [|Cp all2 = [|Ca,ull2- Furthermore:

ar = (Cl—,w)+ef7 pr= (C;I,ﬂ)+ef'

Thus

ldrllz < 1) erll2 1(CT 2 ) erll2 1, ll2 Kru,n

where | K, , x = max|mr — p| max|[H(u;)| + max |z — Aif max|H(Aj)| |
) 1 1 1 1
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Hence, the upper bound of |é7| corresponding to the perturbation of the pole 7, is a product
of the following factors:

1. The absolute value of its corresponding residue ~;.
2. the sensitivity (might be large depending on the selection/partition of sampling points).

3. the norm of the Cauchy matrix containing solely sampling points (could be large when
the points are very close to each other).

4. Aconstant K, , » that depends on the sampling points and on the magnitude of the
original function evaluated and these points (not that large).
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Pseudospectra

e Consider A € C"™ " its e-pseudospectrum is:

Ac(A) = {z €C: |[(2-A)" > e—‘}
(3
A (A)={zeC: zc o(A+ AA) for some AA with ||[AA]| < e}

¢
Ae(A) = {z€C: opin(zl—A) < ¢}

e Given (A, E) € C™ " x C™" and e > 0, its ¢ — (,d) pseudospectrum is:

09’5) = {z € C is an eigenvalue of the pencil z(E+ A) — (A+T)

for some T, A € C"™ " with ||T'|| < ev, [|A]| < 5}

i

("/a‘s)AE — . E*A_1 1
A OnE) = {zeC: IR > s
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Example 1 (Embree-lonita) ‘

Consider a system with realization

A= [—”

Sensitivities after taking measurements.

A1 A2 1y Ho Sens (r1 = —0.1) | Sens (mo = —2.1)
0.00 | 1.00 | 0.00+1.00i | 0.00-1.00i 2.416e—01 2.430e+01
0.25 | 0.75 | 0.00+2.00i | 0.00-2.00i 1.695e+00 2.306e+01
0.40 | 0.60 | 0.00+4.00i | 0.00-4.00i 5.132e+00 3.221e+01
8.00 | 9.00 10.00 11.00 3.828e+05 6.828e+05
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Example 2 (Embree-lonita) ‘

Consider a system with realization

A =diag(—1,-2,---,—-10),

B=[1,1, -

17, ¢

The sensitivities of the poles after taking measurements are:

=[1,1,-

7.

A " Poles Sensitivity A ©n Poles Sensitivity
-10.25 | -9.75 | -1.000 4.781e-02 -5.25 | -10.25 | -10.000 | 4.781e-02
-9.25 | -8.75 | -10.000 | 4.781e-02 -4.75 | -9.75 -1.000 4.781e-02
-8.25 | -7.75 | -9.000 4.951e-02 -4.25 | -9.25 -2.000 4.951e-02
-7.25 | -6.75 | -2.000 4.951e-02 -3.75 | -8.75 -9.000 4.951e-02
-6.25 | -5.75 | -3.000 4.989e-02 -3.25 | -8.25 -8.000 4.989e-02
-5.25 | -4.75 | -8.000 4.989e-02 -2.75 | -7.75 -3.000 4.989e-02
-4.25 | -8.75 | -7.000 5.004e-02 225 | -7.25 -4.000 5.004e-02
-3.25 | -2.75 | -4.000 5.004e-02 -1.75 | -6.75 -7.000 5.004e-02
-225 | -1.75 | -5.000 5.009e-02 -1.25 | -6.25 -6.000 5.009e-02
-1.25 | -0.75 | -6.000 5.009e-02 -0.75 | -5.75 -5.000 5.009e-02

Setting cond (Ls) cond (IL) cond (Cy,») | cond(Cu,x)

1 1.0814e+01 | 1.4685e+00 | 1.2172e+00 | 1.2172e+00

2 2.2385e+06 | 1.0389e+06 | 1.7707e+06 | 1.7707e+06
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A M Poles Sensitivity © Poles Sensitivity
-5.00+0.50i -5.00+1.00i -5.000 1.375e+04 -5.00+0.50i -5.00-0.50i -5.000 1.676e+04
-5.00-0.50i -5.00-1.00i -4.000 1.721e+05 -5.00+1.00i -5.00-1.00i -4.000 1.923e+05
-5.00+1.50i -5.00+2.00i -6.000 3.873e+05 -5.00+1.50i -5.00-1.50i -5.999 5.598e+05
-5.00-1.50i -5.00-2.00i -3.000 2.544e+06 -5.00+2.00i -5.00-2.00i -2.998 2.703e+06
-5.00+2.50i -5.00+3.00i -1.000 3.549e+06 -5.00+2.50i -5.00-2.50i -0.999 3.620e+06
-5.00-2.50i -5.00-3.00i -2.000 8.533e+06 -5.00+3.00i -5.00-3.00i -1.996 8.864e+06
-5.00+3.50i -5.00+4.00i -7.000 1.385e+07 -5.00+3.50i -5.00-3.50i -6.972 2.778e+07
-5.00-3.50i -5.00-4.00i -10.000 7.884e+07 -5.00+4.00i -5.00-4.00i -9.942 3.203e+07
-5.00+4.50i -5.00+5.00i -8.000 1.365e+08 -5.00+4.50i -5.00-4.50i -8.722 1.607e+08
-5.00-4.50i -5.00-5.00i -9.000 2.875e+08 -5.00+5.00i -5.00-5.00i -7.769 2.048e+08

Setting cond (Ls) cond (L) cond (Cy s) cond (Cp.s)

4 2.5548e+08 4.1502e+08 1.8096e+04 2.4538e+04

6 8.4840e+15 1.2067e+16 1.0403e+08 1.0403e+08
A " Poles Sensitivity A o Poles Sensitivity
-2.50+1.00i -7.50+1.00i -1.000 3.836e+03 1.00 0.50 -1.000 2.745e+15
-2.50-1.00i -7.50-1.00i -2.000 1.553e+04 2.00 1.50 1.999 6.323e+15
-2.50+2.00i -7.50+2.00i -10.000 5.356e+04 3.00 2.50 -2.000 5.334e+17
-2.50-2.00i -7.50-2.00i -3.000 5.755e+04 4.00 3.50 -9.839 2.667e+18
-2.50+3.00i -7.50+3.00i -8.000 1.741e+05 5.00 4.50 -3.017 9.103e+18
-2.50-3.00i -7.50-3.00i -9.000 2.093e+05 6.00 5.50 -7.974 1.410e+19
-2.50+4.00i -7.50+4.00i -7.000 2.383e+05 7.00 6.50 -5.888 2.653e+19
-2.50-4.00i -7.50-4.00i -4.000 3.306e+05 8.00 7.50 -4.216 2.654e+19
-2.50+5.00i -7.50+5.00i -6.000 6.402e+05 9.00 8.50 1.054 7.516e+19

-2.50-5.00i -7.50-5.00i -5.000 7.879e+05 10.00 9.50 9.143 Inf

Setting cond (Ls) cond (L) cond (Cy ) cond (Cp.s)

3 4.2868e+09 4.1407e+09 2.3458e+06 3.4688e+05

5 4.5784e+16 2.3000e+16 2.9699e+12 4.6013e+09
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A n Poles | Sensitivity
1.00 1.00 | -1.000 | 6.644e+11
2.00 2.00 | -2.001 | 3.175e+14
3.00 3.00 | -9.854 | 8.299e+15
4.00 4.00 | -3.028 | 8.781e+15
5.00 5.00 | -4.270 | 3.503e+16
6.00 6.00 | -8.042 | 3.806e+16
7.00 7.00 | -5.977 | 5.223e+16
8.00 8.00 | 2.164 | 6.988e+17
9.00 9.00 | 2.995 | 5.052e+18
10.00 | 10.00 | 2.825 | 8.028e+18
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Beam Example (SISO, order = 348) \

The different setting of interpolation points are as follows.

Let w = logspace (—2,1,500), wi = logspace (—2,1,200). Then

e Setting 1 (interlaced):
A={—w(1:2:500)} U {iw(1:2:500)}, p={—w(2:2:500)} U {iw(2:2:500)}

’ o Setting 2 (split): A= {—1w}, p={w} \

e Setting 3 (interlaced and shifted) is obtained from setting 1 by shifting the points:
A={3—1w(1:2:500)}U{3+1w(1:2:500)},
p={3—-1w(2:2:500)} U {3+ w(2:2:500)}.

e Setting 4 (interlaced obtained from w1):
A={—wi(1:2:200)}U{iwy(1:2:200)}, p = {—1w1(2:2:200)}U{iwy(2:2:200)}
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Poles Sensitivity Poles Sensitivity
-0.005-0.105i 2.166e-03 -0.005+0.105i 6.170e-03
-0.005+0.105i 2.166e-03 -0.005-0.105i 6.170e-03
-0.007-0.569i 8.215e-03 -0.007-0.569i 4.988e+00
-0.007+0.569i 8.215e-03 -0.007+0.569i | 4.988e+00
-0.014-1.369i 1.264e-01 -0.014-1.372i 5.449e+02
-0.014+1.369i 1.264e-01 -0.014+1.372i 5.449e+02
-0.032+2.305i 1.546e+00 -0.091-2.361i 1.118e+04
-0.032-2.305i 1.546e+00 -0.091+2.361i 1.118e+04
-0.066+3.352i 1.269e+01 -0.919+7.723i 6.678e+04
-0.066-3.352i 1.269e+01 -0.919-7.723i 6.678e+04
-1.705-9.222i 9.223e+02 -0.255-3.751i 1.167e+05
-1.705+9.222i 9.223e+02 -0.255+3.751i 1.167e+05

Poles Sensitivity Poles Sensitivity

0.059-0.000i 1.734e+05 -0.005-0.105i 4.748e-03
-0.660-7.986i 2.105e+05 -0.005+0.105i 4.748e-03
-0.660+7.986i 2.105e+05 -0.007-0.569i 2.691e-02
-0.423+0.000i 7.663e+05 -0.007+0.569i 2.691e-02
-0.823-5.777i 2.545e+06 -0.014+1.369i 9.268e-01
-0.823+5.777i 2.545e+06 -0.014-1.369i 9.268e-01
1.556-3.498i 1.234e+07 -0.032-2.305i 5.709e+00
1.556+3.498i 1.234e+07 -0.032+2.305i 5.709e+00
-7.036-13.182i 2.125e+07 -0.072+3.379i 4.479e+01
-7.036+13.182i 2.125e+07 -0.072-3.379i 4.479e+01
-35.345+62.830i 4.317e+09 -1.696-9.016i 1.545e+03
-35.345-62.830i 4.317e+09 -1.696+9.016i 1.545e+03
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Poles Sensitivity
: -0.005-0.1051 | 1.0496-02
-0.005+0.1051 | 1.049¢-02
-0.007+0.5691 | 1.839¢-02
J -0.007-0.5691 | 1.839e-02
’ TELIM -0.014-1.3681 | 1.274e-01
-0.014+1.3681 | 1.274e-01
-0.719+8.0041 | 3.838e+01
-0.719-8.0041 | 3.838e+01
-2.221-0.0001 | 8.6956+02
7.269-13.7631 | 3.2886+03
7.269+13.7631 | 3.288¢+03
-60.652+0.0001 | 3.987e+04

Poles and Sensitivities of ROM con-
structed by IRKA
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Loewner System Constructed by Interpolation Points of ROMs

Interpolation Points of ROM (Setting 1) Interpolation Points of ROM (Setting 2)
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Poles Sensitivity Poles Sensitivity
-0.007+0.569i 1.577e+02 -0.005-0.105i 2.661e+02
-0.007-0.569i 1.697e+02 -0.005+0.105i 8.170e+02
-0.005+0.105i 2.449e+02 -0.007-0.569i 2.314e+05
-0.005-0.105i 3.061e+02 -0.007+0.569i 2.434e+05
-0.014+1.369i 1.378e+03 -0.014-1.372i 8.155e+06
-0.014-1.369i 1.423e+03 -0.014+1.372i 1.797e+07
-0.032+2.305i 1.137e+04 -0.091-2.361i 3.302e+07
-0.032-2.305i 1.151e+04 -0.091+2.361i 5.944e+07
-0.066+3.352i 1.319e+05 -0.919-7.723i 1.263e+08
-0.066-3.352i 1.322e+05 -0.919+7.723i 1.383e+08
-1.705-9.222i 3.850e+06 -0.255-3.751i 3.079e+08
-1.705+9.222i 3.860e+06 -0.255+3.751i 3.512e+08

Poles Sensitivity Poles Sensitivity
0.059-0.000i 5.065e+12 -0.007-0.569i 1.779e-01
-0.660+7.986i 5.180e+12 -0.005-0.105i 2.215e-01
-0.660-7.986i 5.180e+12 -0.005+0.105i 2.336e-01
-0.423+0.000i 2.113e+13 -0.007+0.569i 2.354e-01
-0.823+5.777i 6.286e+13 -0.014+1.369i 7.310e+00
-0.823-5.777i 6.286e+13 -0.014-1.369i 8.774e+00

-7.036+13.182i 1.889%e+14 -0.032+2.305i 1.964e+01
-7.036-13.182i 1.889e+14 -0.032-2.305i 2.175e+01
1.556+3.498i 3.739%e+14 -0.072-3.379i 6.555e+02
1.556-3.498i 3.739%e+14 -0.072+3.379i 6.648e+02
-35.345+62.830i 2.973e+15 -1.696-9.016i 1.187e+04
-35.345-62.830i 2.973e+15 -1.696+9.016i 1.223e+04

Poles and Sensitivities of Loewner system, setting 1-4 from left to right
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Balanced Truncation k = 12

Obtain ROM by balanced truncation. Then choose the zeros of error system as interpolation

points to construct the Loewner system.

Zeros of Error System (BT r=12)
150

100 8 A

-100 ®

-150
600  -500 400  -300 200  -100 0 100 200

Poles Sensitivity
-0.035-2.297i | 1.388e+00
-0.015-1.368i | 2.269e+00
-0.015+1.368i | 3.443e+00
-0.007-0.569i | 4.357e+00
-0.007+0.569i | 4.362e+00
-0.035+2.297i | 4.462e+00
-0.005-0.105i | 7.556e+00
-0.005+0.105i | 8.146e+00
-0.092-3.278i | 7.115e+01
-0.092+3.278i | 7.507e+02
-1.043-7.469i 1.290e+05
-1.043+7.469i | 3.966e+05
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Pseudospectra

Pseudospectra of Full Model
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Pole Distribution of ROMs with perturbation on the measurements.
Below we show the poles of 10000 ROMs with perturbation on the measurements.

The first figure shows the pole distribution of ROMs with perturbation on the original
measurements. The second figure shows the pole distribution of ROMs with perturbation on
the ROM’s interpolation points.
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