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Introduction

”Model order reduction (MOR) is a methodology for reducing the computational
complexity of mathematical models in numerical simulations. [Wikipedia]
Here (1) we will give an overview of the data-driven modeling framework
known as the Loewner framework and (2) we will discuss issues related to
the sensitivity of the resulting models.

The overall problem

Physical or artificial system

⇓

PDEs
⇓

ODEs
⇓

Model reduction
(Reduced number of ODEs)

⇓

Simulation, Design, Control

⇐= DATA
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Dynamical systems

Σ :

{
ẋ(t) = f(x(t),u(t))
y(t) = h(x(t),u(t))

u1(·) −→
u2(·) −→

...
um(·) −→

−→ y1(·)
−→ y2(·)

...
−→ yp(·)

We consider internal equations

Σ : E ẋ(t) = f(x(t),u(t)), y(t) = h(x(t),u(t))

with internal variable x(·) of dimension n > m, p.
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Model reduction via projection

Given is
Eẋ(t) = f(x(t),u(t))

y(t) = h(x(t),u(t))
or

Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

.

Common framework for (most) model reduction methods:

Petrov-Galerkin projective approximation.

Choose k -dimensional subspaces, Vk = Range(Vk ),Wk = Range(Wk ) ⊂ Cn.

Find v(t) = Vk xk (t) ∈ Vk , xk ∈ Ck , such that

Ev̇(t)− Av(t)− B u(t) ⊥ Wk ⇒

W∗k (EVk ẋk (t)− AVk xk (t)− B u(t)) = 0, yk (t) = CVk xk (t) + Du(t),

Reduced order system

Ek = W∗k EVk , Ak = W∗k AVk , Bk = W∗k B, Ck = CVk .
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The quality of the reduced system depends on the choice of Vk andWk .

E,An

n

C

B

D

⇒
Ek ,Akk

k

Ck

Bk

Dk

Model order reduction (MOR) seeks to reduce the complexity of large-scale dynamical
systems by approximations of much lower dimension that produce nearly the same
input/output response characteristics.

In the sequel we will concentrate on interpolatory model reduction methods and in particular
on the Loewner framework which is data-driven.
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Motivating Examples I Model reduction of an artificial fishtail.

• The autonomous soft robotic fish was developed at MIT and Worchester Polytechnic.
The fish is novel because it is has a soft body and has a new fluidic actuation system.

performed maneuvers have a similar input–output relation-
ship as observed in biological fish.

Performance and autonomy are competing goals in fluid-
powered soft robots. Some fluid-powered soft machines show
promising capabilities such as walking10 and leaping11 but
are primarily driven by cumbersome external hardware lim-
iting their practical use. Conversely, there are instances of
self-contained fluidic soft robots;12–14 however, because of
the constraints imposed by bringing all supporting hardware
onboard, performance of these robots is severely limited
when compared with rigid-bodied robots. The primary
technical challenge addressed by this work is the advance-
ment of soft-bodied robots to simultaneously be capable
of rapidly achieving continuum-body motion and be self-
contained. We illustrate our proposed technical approach by
designing and building a soft robot fish capable of emulating
the escape response of fish because this maneuver ex-
emplifies rapid and continuum-body motion and exhibits the
highest accelerations seen in fish.1

The soft robotic fish exhibits continuum motion that
conventional rigid-bodied robotic fish cannot achieve. For
instance, although many notable robotic fish exist,15–19

these prior robotic systems have bodies composed of rigid
segments connected by fixed joints and are consequently
incapable of reproducing the body kinematics observed
during agile escape response maneuvers. Previous at-
tempts to recreate an escape response used a body com-
posed of multiple position-controlled, rigid links;20–22

however, such fully actuated, rigid-bodied systems inher-
ently fail to capture the continuum motion of the escape
response maneuver.

We build on several prior works that aim to create ro-
botic fish using biologically inspired flexible posteriors. Self-
propelling flexible foils driven by an external robotic actuator
have been studied by Lauder and colleagues.23,24 Valdivia y
Alvarado and Youcef-Toumi used a compliant body in the
design of a robotic fish to mimic the swimming kinematics of
a natural fish.25 Similarly, the robot fish FILOSE26,27 has a
compliant posterior and serves as a test bed for fishlike
sensing and locomotion. Both of these systems are cable-
driven and actuated with an onboard servomotor but lack
autonomy and require an external power supply. Recently,
researchers have developed a cable-driven, flexible spring-
steel spine to model escape response behavior;28 however, in
this system the motor, control system, and power supply are
external to the apparatus, and its motion is constrained. Long
et al. have developed a flexible biomimetic vertebral column
used to propel an autonomous surface-swimming robot.29

The vehicle can also perform an escape response.30 Again, a
single servomotor is used to actuate the compliant spine.
Although this system is autonomous, relative to the afore-
mentioned work, only a small portion of the body is flexible,
namely, its posterior tail, and because its large anterior is a
surface vessel, the system is limited to surface swimming.
Notably, the above-mentioned compliant-bodied robotic fish
operate on the principle of a passive, flexible mechanism

FIG. 1. Details of a soft-
bodied robotic fish. Top: A
dorsal view of the fish
showing (A) rigid anterior,
(B) center of mass, (C) an-
terior trunk musclelike actu-
ator pair, (D) inextensible
vertebrate-like constraint, (E)
posterior trunk actuator pair,
and (F) passive caudal fin.
Center: A cross-sectional
rendering of the mechanism
showing (G) fluidic elasto-
mer channels grouped into
antagonistic actuator, (H)
flexible constraint layer, and
(I) pressurized elastomer
channels in agonistic actua-
tor. Bottom: An exploded
view of the robot detailing
( J) silicone skin, (K) com-
munication and control elec-
tronics, (L) compressed gas
cylinder and regulator, (M)
flow control valves, (N) ac-
tuator access port, (O) plastic
fuselage, (P) videography
markers, and (Q) silicone
elastomer trunk.
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Fig. 1. Designed fishtail, left side: top view (z2, z3-plane), right side: front view (z1, z2-plane).

on one side. This beam will be moulded into the silicon hull
during the manufacturing process. To enable the mounting
of a fin the center beam is 10mm longer than the fishtail
itself.

2.2 Actuation and Measurement

Actuation makes use of fluid elastomers and is based on
Marchese et al. (2014). Its principle mechanism is shown in
Fig. 2 and relies on the expansion of elastic fluid chambers
during pressurization. The presented design uses two sepa-
rated chambers allowing to mimic the natural antagonistic
muscle pair interaction. Pressurizing one system by a fluid
results in an expansion of the chambers. Depending on the
actuation concept this translates into a bending motion for
asymmetric actuation/pressurizing of the chambers or into
an elongation of the structure for symmetric actuation.

Fig. 2. Principle of fluid elastomer actuation (left: not
pressurized, right: pressurized).

The maximal bending effect is accomplished by an anti-
symmetric actuation of both chambers, so that the u1(t) =
−u2(t) holds for the pressures applied to chamber 1 (u1(t))
and 2 (u2(t)). This would require a device, which supplies
the fishtail with positive and negative pressure compared
to the atmospheric level of 1013.25 hPa leading to a rather
large experimental setup. To enable the autonomous op-
eration the actuation principle has to be adjusted to
minimize equipment. Therefore, both chambers are pre-
pressurized with upre = 200 hPa and a difference pressure
u(t) is used as control input leading to an effective pressure
in the chambers of

u1,2(t) = upre ± u(t). (1)

This approach requires a single pressure supply since
u(t) can be generated by controlled valves connecting the
chambers.

Fig. 3 shows one of the two identical fluid chambers,
placed at a distance of 2mm to the center beam. The
chambers are characterized by a thickness of 4mm and
a constant distance to their neighbors. For the connection
of the chambers a main supply tube with an diameter of
5mm is used. In order to enhance the structural stability
and to achieve a faster pressure distribution two similar

additional tubes with a radius of 1mm are placed at the
left and right of the main tube. Removing the volume of

ChambersMain Tubes

Side Tubes

Fig. 3. Fluid chamber system designed with FreeCAD.

the chambers from the fish hull yields the complete fishtail,
where the chambers are displayed as free spaces (see Fig.
4). To achieve autonomous operation, a suitable embedded

Fig. 4. Complete fishtail designed with FreeCAD.

measurement system has to be integrated. Here, a strain
gauge is placed at the connection between the mounting
part and the fishtail.

3. MATHEMATICAL MODEL

The elastic or soft material evolves both in time and space,
so that the mathematical description involves partial dif-
ferential equations (PDE). Due to the complex geometric
and material structure of the introduced fishtail modeling
is performed using the finite element method (FEM). Its
idea is to approximate the original geometry by a finite
set of simple shaped subdomains like triangles. On the
subdomains (finite elements) trial functions are defined
as the local approximation of the displacement, whereby
the superposition of the trial functions yields the approx-
imation of the PDE on the global domain in terms of an
in general high-dimensional system of ordinary differential
equations (ODE) (Zienkiewicz et al. (2005)).

This section introduces the constitutive equations, the
equations of motion and the boundary conditions for the

Proceedings of the 9th MATHMOD
Vienna, Austria, February 21-23, 2018

2

A.D. Marchese, C.D. Onal, and D. Rus, Autonomous soft robotic fish capable of escape
maneuvers using fluidic elastomer actuators, Soft Robotics, vol. 1, pages 75-87, (2014).

• Mathematical model. Constitutive equations (elasticity):

ρ ∂2
t s(t , z) = ∇ · σ(s(t , z)), t > 0, z ∈ Ω, where s(0, z) = s0(z),

where s(t , z) is the first-order displacement tensor, σ(t , z) is the stress tensor and Ω is the
domain of interest.
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By appropriate discretization of this partial differential equation, we obtain a second-order
finite-dimensional system of the form

M ẍ(t) + E ẋ(t) + K x(t) = Bu(t), y(t) = Cx(t),

where x is a discretized version of s, and the damping E is proportional. Goal: build a
controller, for the tail. The main issue at this stage is the resulting complexity, namely:

M, E, K ∈ RN×N , B ∈ RN , C ∈ R3×N , where N = 779, 232.

D. Siebelts, A. Kater, and T. Meurer, Modeling and motion planning for an artificial fishtail,
IFAC PapersOnLine, vol. 51, pages 319-324 (2018).
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• Model order reduction
J. Saak, D. Siebelts, and S.W.R. Werner, A comparison of second-order model order
reduction methods for an artificial fishtail, Automatisierungstechnik, vol. 67, pages 648-667
(2019).

Procedure. Choose n = 500 frequencies on the imaginary axis:
omega = logspace(−1, 3, 500). Subsequently compute the 500 frequency response values:

H(s) = C
(

s2M + sE + K
)−1

B ∈ C3×1, where s = jωk , k = 1, · · · , 500.

Remark: this computation takes about 2 days.

Together with the complex conjugate frequencies and transfer function values build the
Loewnere quadruple:

L, Ls ∈ Rn×n, V ∈ Rn, W ∈ R3×n.
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I Accelerating the commercial aircraft design and certification cycle.

• The design and optimization of modern commercial aircraft typically requires accurate
predictions of airframe response to diverse operational loads, which may include for
example, wind gusts, turbulence, wake vortices, asymmetric thrust, and vibration.
• This must be done repeatedly at different stages of the design process.

• High fidelity reduced models play a significant role in reducing overall simulation time by
providing cheap and accurate surrogates for different subsystems.
• The data-driven Loewner approach is well suited to this purpose since the construction of
reduced models can be done independently of the availability of analytical system models.

• The system input-output response was measured at 421 frequencies.
• The system input is a distributed gust disturbance.
• The system output is the lift and pitch moment at 44 locations on the wing and tail.
• The full-order system has 5× 105 fluid degrees of freedom and 2× 103 structural
degrees of freedom.
• The reduced dynamical system has 30 degrees of freedom.
• The relative deviation between the reduced system response and the full-order system
response is never larger than 0.35%
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Matlab Loewner Toolbox Dassault business jet test
C. Poussot-Vassal & P. Vuillemin
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I Microstrip device.

Microstrip transmission lines are a common way to connect two devices. They consist of two
thin parallel (metal) strips, mounted on the same dielectric substrate.

Microstip devices are described by S-parameters (Scattering parameters).

VNA (Vector Network Analyzer) and VNA screen showing the magnitude of the
S-parameters for a 2 port device.
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The Loewner matrix

Given:
row array (µj , vj ), j = 1, · · · , q,
column array (λi ,wi ), i = 1, · · · , k ,

the associated Loewner matrix is:

L=


v1−w1
µ1−λ1

· · · v1−wk
µ1−λk

...
. . .

...
vq−w1
µq−λ1

· · · vq−wk
µq−λk

∈Cq×k

If wi = g(λi ), vj = g(µj ), are samples of g:

Main property. Let L be as above.
Then k , q ≥ deg g ⇒ rankL = deg g.

Karel Löwner (1893 - 1968)

• Born in Bohemia

• Studied in Prague under Georg Pick

• Emigrated to the US in 1939

• Seminal paper:
Über monotone Matrixfunctionen,
Math. Zeitschrift (1934).
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Rational interpolation and the Loewner matrix

• Lagrange basis for space of polynomials of degree at most n.

Given distinct λi ∈ C, i = 1, · · · , n + 1, define

qi (s) := Πk 6=i (s − λk ), i = 1, · · · , n + 1.

• For given constants αi , wi , i = 1, · · · , n + 1, consider

n+1∑
i=1

αi
g− wi

s − λi
= 0, αi 6= 0.

• Solving for g we obtain

g(s) =

∑n+1
i=1

αi wi
s−λi∑n+1

i=1
αi

s−λi

⇒ g(λi ) = wi .
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The free parameters αi , can be specified so that

g(µj ) = vj , j = 1, · · · , r ,

where (µj , vj ), µi 6= µj , are given. For this to hold Lc = 0, where

L =


v1−w1
µ1−λ1

· · · v1−wn+1
µ1−λn+1

...
. . .

...
vr−w1
µr−λ1

· · · vr−wn+1
µr−λn+1

 ∈ Cr×(n+1), c =

 α1,
...

αn+1

 ∈ Cn+1.

L: Loewner matrix with

row array: (µj , vj ), j = 1, · · · , r , and

column array: (λi ,wi ), i = 1, · · · , n + 1.

Main property
Let L be a p × k Loewner matrix with p, q ≥ deg g. Then rankL = deg g .

• A.C. Antoulas and B.D.O. Anderson, On the scalar rational interpolation problem, IMA
Journal of Mathematical Control & Information, vol. 3, pages 61-88 (1986).
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Reference

Y. Nakatsukasa, O. Sete, and L.N. Trefethen, The AAA algorithm for rational interpolation.

THE AAA ALGORITHM FOR RATIONAL APPROXIMATION

YUJI NAKATSUKASA∗, OLIVIER SÈTE† , AND LLOYD N. TREFETHEN‡

For Jean-Paul Berrut, the pioneer of numerical algorithms based on
rational barycentric representations, on his 65th birthday.

Abstract. We introduce a new algorithm for approximation by rational functions on a real
interval or a set in the complex plane, implementable in 40 lines of Matlab. Even on a disk or interval
the algorithm may outperform existing methods, and on more complicated domains it is especially
competitive. The core ideas are (1) representation of the rational approximant in barycentric form
with interpolation at certain support points, (2) greedy selection of the support points to avoid
exponential instabilities, and (3) least-squares rather than interpolatory formulation of the overall
problem. The name AAA stands for “aggressive Antoulas–Anderson” in honor of the authors who
introduced a scheme based on (1). We present the core algorithm with a Matlab code and eight
applications and describe variants targeted at problems of different kinds.

Key words. rational approximation, barycentric formula, analytic continuation, AAA algo-
rithm, Froissart doublet

AMS subject classifications. 41A20, 65D15

1. Introduction. Rational approximations of real or complex functions are used
mainly in two kinds of applications. Sometimes they provide compact representations
of functions, much more efficient than polynomials for functions with poles or other
singularities on or near the domain of approximation or on unbounded domains. Other
times, their role is one of extrapolation: the extraction of information about poles or
values or other properties of a function in regions of the real line or complex plane
beyond where it is known a priori. For example, standard methods of acceleration of
convergence of sequences and series, such as the eta and epsilon algorithms, are based
on rational approximations [6, 15]. For a general discussion of the uses of rational
approximation, see Chapter 23 of [38], and for theoretical foundations, see [14].

Working with rational approximations, however, can be problematic. There are
various challenges here, one of which particularly grabs attention: spurious poles, also
known as Froissart doublets, which can be regarded either as poles with very small
residues or as pole-zero pairs so close together as to nearly cancel [19, 37]. Froissart
doublets arise in the fundamental mathematical problem — i.e., in “exact arithmetic”
— and are the reason why theorems on convergence of rational approximations, e.g. of
Padé approximants along diagonals of the Padé table, typically cannot hold without
the qualification of convergence in capacity rather than uniform convergence [6, 31].
On a computer in floating point arithmetic, they arise all the more often; we speak
of numerical Froissart doublets, recognizable by residues on the order of machine
precision. These difficulties are related to the fact that the problem of analytic con-

∗nakatsukasa@maths.ox.ac.uk, Mathematical Institute, University of Oxford, Oxford, OX2 6GG,
UK.
†sete@maths.ox.ac.uk, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
‡trefethen@maths.ox.ac.uk, Mathematical Institute, University of Oxford, Oxford, OX2 6GG,

UK. YN was supported by the Japan Society for the Promotion of Science as a Postdoctoral Fellow
for Research Abroad. OS and LNT were supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement 291068.
The views expressed in this article are not those of the ERC or the European Commission, and the
European Union is not liable for any use that may be made of the information contained here.
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The Loewner framework

Given: right data: (λi ; ri ,wi ), i = 1, · · · , k , and left data: (µj ; `
∗
j , v
∗
j ), j = 1, · · · , q (for

simplicity all points are assumed distinct).

Problem: Find rational p ×m matrices H(s), such that: H(λi )ri = wi , `∗j H(µj ) = v∗j .

Right data:

Λ =

 λ1
. . .

λk

 ∈ Ck×k ,

R = [r1 r2, · · · rk ] ∈ Cm×k ,

W = [w1 w2 · · · wk ] ∈ Cp×k ,

Left data:

M =

 µ1
. . .

µq

∈Cq×q, L =

 `
∗
1
...
`∗q

∈Cq×p, V =

 v∗1
...

v∗q

 ∈ Cq×m
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State-space representation: the Loewner matrix pair

Recall data: H(λi )ri = wi , `∗j H(µj ) = v∗j .

The Loewner matrix L ∈ Cq×k is:

L =


v∗1 r1−`∗1 w1
µ1−λ1

· · · v∗1 rk−`∗1 wk
µ1−λk

...
. . .

...
v∗q r1−`∗q w1
µq−λ1

· · ·
v∗q rk−`∗q wk
µq−λk


L satisfies the Sylvester equation

LΛ−ML = VR− LW

If H(s) = C(sE− A)−1B, is given:
xi := (λi E − A)−1Bri , yj := `j C(µj E − A)−1

⇒

X, Y: gen. reach./observ. matrix⇒

⇒ L = −YEX

The shifted Loewner matrix L ∈ Cq×k is:

Ls =


µ1v∗1 r1−`∗1 w1λ1

µ1−λ1
· · · µ1v∗1 rk−`∗1 wkλk

µ1−λk
...

. . .
...

µqv∗q r1−`∗q w1λ1
µq−λ1

· · ·
µqv∗q rk−`∗q wkλk

µq−λk


Ls satisfies the Sylvester equation

LsΛ−MLs = MVR− LWΛ

Ls can be factored as

⇒ Ls = −YAX
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Construction of Models or Learning from the data

• If det (xL− Ls) 6= 0, x ∈ {λi} ∪ {µj}, then

E = −L, A = −Ls, B = V, C = W

is a minimal interpolant of the data, i.e., H(s) interpolates the data:

H(s) = W(Ls − sL)−1V

• Otherwise, if the numerical rankL = k , compute the rank revealing SVD:

L = YΣX∗ ≈ Yk Σk X∗k

Theorem. A realization [E,A,B,C], of an approximate interpolant is given as follows:

E = −Y∗kLXk , A = −Y∗kLsXk , B = Y∗k V, C = WXk .
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The Loewner Algorithm (simple version)

1. Consider given (frequency domain) measurements (si , φi ), i = 1, . . . ,N.

2. Partition the measurements into 2 disjoint sets

frequencies : [s1, · · · , sN ] = [λ1, · · · , λk ] , [µ1, · · · , µq ] , k + q = N,

values : [φ1, · · · , φN ] = [w1, · · · ,wk ] , [v1, · · · vq ] = W, VT .

3. Construct the Loewner pencil:

L =

(
vi − wj

µi − λj

)j=1,··· ,k

i=1,··· ,q
, Ls =

(
µi vi − λj wj

µi − λj

)j=1,··· ,k

i=1,··· ,q
.

4. It follows that the raw model is: (W, L, Ls, V).

5. Compute the rank revealing SVD: L ≈ YΣX∗ (Σ ∈ Rr×r ).

6. The reduced model (Ĉ, Ê, Â, B̂) is obtained by projecting the raw model
(W,L,Ls,V):

Ĉ = WX, Ê = −Y∗LX, Â = −Y∗LsX, B̂ = Y∗V.

7. Reference: S. Lefteriu and A.C. Antoulas: A New Approach to Modeling Multiport
Systems from Frequency-Domain Data, IEEE Trans. CAD, 29: 14-27 (2010).
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Example: a discretized Euler-Bernoulli beam

• System of order n = 348 (obtained after discretization) representing a clamped beam.
• N = 60 frequency response measurements, sk = jωk , with ωk ∈ [−1,−0.01] ∪ [0.01, 1].
• Construct 30× 30 Loewner pencil and Y, X ∈ R30×12 from the SVD.
• Project to get reduced model of order r = 12.
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Reduced model from frequency response measurements
1001 S-parameter measurements between 10-18 GHz (CST).

Data frequency response ‖Si,j‖, i, j = 1, 2. Data two singular values.

Singular values of 1001× 1001 Loewner matrix Singular-value fit of model k = 72

S-parameter-error: ∈ [10−6, 10−4] Two singular values of model: ω ∈ [0, 10THz]
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The issue of sensitivity

A general factorization of the Loewner pencil and its consequences.

Given the system Σ and a minimal realization thereof:

Σ = (C,E,A,B) ∈ Rp×n × Rn×n × Rn×n × Rn×m,

let the associated resolvent be denoted by Φ(s) = (sE− A)−1, and the transfer function by
H(s) = CΦ(s)B. Next, consider the Loewner data below and the rsulting Loewner
quadruple:

(M, LT , VT )︸ ︷︷ ︸
left data:q×q,q×p,q×m

and (Λ, R, W)︸ ︷︷ ︸
right data:k×k,m×k,p×k

⇒ (W, L, Ls, VT )︸ ︷︷ ︸
Loewner quadruple: p×k,q×k,q×k,q×m

Let CL and CR be the associated left/right rational Krylov projectors:

CL =


`T

1 CΦ(µ1)

...

`T
q CΦ(µq)

 ∈ Cq×n, CR =
[

Φ(λ1)Br1 · · · Φ(λk )Brk
]
∈ Cn×k ,

assumed to satisfy the condition that CLCR has full rank.
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It readily follows that the following Sylvester equations are satisfied:

MCL E− CLA = LT C and ECRΛ− ACR = B R

Multiplying the former equation by CR on the right and the latter by CL on the left we obtain

M CL E CR︸ ︷︷ ︸
L

−CL A CR︸ ︷︷ ︸
Ls

= LT · CCR︸ ︷︷ ︸
W

and CL E CR︸ ︷︷ ︸
L

Λ− CL ACR︸ ︷︷ ︸
Ls

= CLB︸︷︷︸
V

·R

which yield the well known relationships: ML− Ls = LW and LΛ− Ls = VR.
Appropriate addition/subtraction of these equations yields in turn the Sylvester equations
satisfied by the Loewner pencil:

LΛ−ML = VR− LW and LsΛ−MLs = (MV)R− L(WΛ).

Thus the following factorizations hold:

L = CL E CR , Ls = CL A CR , W = CCR , V = CLB
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Lemma. The above factorizations lead to three conclusions.

I (a) (Ls,L) is the Loewner pencil, i.e. (L)i,j =
vT

i rj−`T
i wj

λj−µi
, (Ls)i,j =

µi v
T
i rj−`T

i wjλj
λj−µi

.

Thus the rank of L is equal to the McMillan degree n of the system Σ.

I (b) The factorizations are rank revealing.

I (c) An explicit generalized EVD (eigenvalue decomposition) of the Loewner pencil
(Ls,L) results, namely

v̂ = C+
R v and ŵT = wTC+

L .

Proof.We will show part (c). Let (λ, v,w) be a right/left eigenvalue/eigenvector triple of (A,E).
Then v̂ = C+

R v, where the exponent + denotes the Moore-Penrose pseudo inverse, is the right
eigenvector of the Loewner pencil (Ls,L), corresponding to the eigenvalue λ:

Ls v̂ = CLACR v̂ = CLACRC+
R v = CLAv = λ CLEv = λ CLECRC+

R v = λ CLECRCR v̂ = λLv̂.

Similarly for the left eigenvectors associated with the eigenvalues of (Ls, L).

Remark.The fact that rational Krylov projections are associated with the Loewner pencil, brings two
issues into the picture: (1) the fact that the rank of L is equal to the McMillan degree of the
undelying system and (2) the fact that an explicit GEVD (generalized eigenvalue decomposition) of
the projected pencil results.
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Basics of perturbation theory
Consider the generalized eigenvalue problem of the pencil (A, E):

Av = σEv, wT A = σwT E,

where σ is assumed to be a simple eigenvalue. An ε-perturbation of the system yields

(A + ε∆A)(v + εv(1) + · · · ) = (σ + εσ(1) + · · · )(E + ε∆E)(v + εv(1) + · · · ),

(wT + εw(1)T
+ · · · )(A + ε∆A) = (σ + εσ(1) + · · · )(wT + εw(1)T

+ · · · )(E + ε∆E).

Retaining only the first-order terms yields (A− σE)v(1) = (σ(1)E + σ∆E −∆A)v. We wish to
find an expression for σ(1), which measures the first-order sensitivity of σ. Towards this goal
we multiply this equation on the left by the corresponding left eigenvector w:

wT (A− σE)v(1) = wT (σ(1) E + σ∆E −∆A)v ⇒

σ(1) =
wT ∆Av− σwT ∆Ev

wT Ev
=

wT (∆A − σ∆E)v
wT Ev

.

If we now assume that ‖∆A‖ = ‖A‖, ‖∆E‖ = ‖E‖, we obtain

|σ(1)| ≤
‖w‖ (‖A‖+ |σ|‖E‖) ‖v‖

|wT Ev|
= constσ ·

‖w‖ · ‖v‖
|wT E v|︸ ︷︷ ︸
sensσ

.

If E = I, we obtain the well known result: 1
sensσ = cos∠(v,w).
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The SISO case

Let an underlying linear siso (m = p = 1) system of dimension n be represented by means
of its partial fraction decomposition:

H(s) =
n(s)

d(s)
=

n∑
i=1

γi

s − πi
,

where 0 6= γi ∈ C, for all i .

To this system we associate a Loewner quadruple (W,Ls,L,V) constructed by means of the
left interpolation points µi , i = 1, · · · , q, the right interpolation points λj , j = 1, · · · , k
(assumed distinct), the left values Vi = H(µi ) and the right values Wj = H(λj ), where
q, k ≥ n. With R = 1T

q , L = 1k , the Loewner pencil satisfies the Sylvester equations:

LΛ−ML = VR− LW, LsΛ−MLs = (MV)R− L(WΛ).

In the sequel we will denote the poles of the system by: Π = diag [π1, · · · , πn] ∈ Cn×n.
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Given two sets of mutually distinct complex numbers αi , i = 1, · · · , κ, and βj , j = 1, · · · , ρ,
we define the associated Cauchy matrix:

Cα,β =


1

α1−β1
· · · 1

α1−βρ
... · · ·

...
1

ακ−β1
· · · 1

ακ−βρ

 ∈ Cκ×ρ.

This Cauchy matrix satisfies the Sylvester equation:

Cα,β A− B Cα,β = 1κ1T
ρ , where A = diag [α1, · · · , ακ], B = diag [β1, · · · , βρ].

Lemma. In the above setting, the relationships below hold true, where the matrix containing
the residues γi is denoted by: Γ = diag [γ1, · · · , γn]:

W = 1T
n Γ Cπ,λ ∈ C1×k ,

L = Cµ,π Γ Cπ,λ ∈ Cq×k ,

Ls = Cµ,π Π Γ Cπ,λ ∈ Cq×k ,

V = Cµ,π Γ 1n ∈ Cq×1.

• P. Amstutz, Une méthode d’interpolation par les fonctions rationelles,
Annales des Télécommunications, tome 22, Mars-Avril 1967, pages 62-54.
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The proof is based on the fact that because the simulateous factorization of the Loewner
pencil is rank revealing, the Moore-Penrose generalized (or pseudo-) inverse of the (in
general) rectangular matrix

Φ(s) = s L− Ls = Cµ,π︸︷︷︸
q×n

[s Γ− Γ Π]︸ ︷︷ ︸
n×n

Cπ,λ︸︷︷︸
n×k

∈ Cq×k ,

is as follows:

ΦMP(s) = C∗π,λ
(
Cπ,λC∗π,λ

)−1
[s Γ− ΓΠ]−1 (C∗µ,πCµ,π)−1 C∗µ,π ∈ Ck×q ⇒

WΦMP(s)V = [γ1, · · · , γn] (diag [s − π1, · · · , s − πn] )−1 1n =
n∑

i=1

γi

s − πi
= H(s).

Thus, although the Loewner pencil is rectangular and/or singular, using the Moore-Penrose
pseudo-inverse, we recover the original system, without the need of an explicit projection.
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The sensitivity formula.
From the previous section we can now insert the expressions for v and w as a function of the
Cauchy matrices CL = Cµ,π and CR = Cπ,λ. In addition, if the original system realization is
as above, the sensitivity of the i th pole, is up to a constant, given by

sensi =
‖eT

i C
+
µ,π‖ · ‖C+

π,λei‖

|eT
i C

+
µ,π L C+

π,λei |
=
‖eT

i C
+
µ,π‖ · ‖C+

π,λei‖
|γi |

We notice that this expression depends on the interpolation points chosen, through the
Cauchy matrices, as well as the on the size of the corresponding residue; hence the
condition numbers of these matrices and the residue are relevant for determing sensi .
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Consequences: eigenvalue sensitivity

1. GEVD of the Loewner pencil. The right eigenvector of the Loewner Matrix Pencil (Ls,L)
corresponding to the eigenvalue πr is

qr = (CR)+er ,

where + is the notation of pseudo-inverse and er is the unit vector whose r th entry is 1 while
the rest are 0. Similarly, the left eigenvector corresponding to the same eigenvalue is

pr = (CT
L )+er .

If the system is SISO, then the eigenvector of Loewner matrix pencil can be also obtained by

qr = (CT
λ,π)+er , pr = (CT

µ,π)+er .

Here the difference of the two expressions is the norm of the eigenvector.
2. Sensitivity of the poles for Loewner pencil. For any matrix pencil (A,E), under the
perturbation of Ā = A + NA and Ē = E + NE , the first order approximation of the eigenvalue
perturbation δπ is

δπ =
pT (NA − πNE ) q

pT Eq
.

Similarly, for the Loewner pencil if the perturbated matrices are L̄ = L + N,
L̄s = Ls + Ns , the first order approximation of the eigenvalue perturbation δπ is

δπ =
pT (Ns − πN) q

pTLq
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A bound for pole sensitivity (Gosea). It can be shown that:

δπ = dT ε, where ε =

[
εµ
ελ

]
, and d =

[
diag(p)(πI−M)VCµ,λq
diag(q)(πI− Λ)WCλ,µp

]
.

The following sequence of inequalities holds

‖d‖2 ≤ ‖diag(p)(πI− M)VCµ,λq‖2 + ‖diag(q)(πI− Λ)WCλ,µp‖2

≤ ‖p‖∞︸ ︷︷ ︸
≤‖p‖2

max
i
|πi − µi |max

i
|H(µi )|‖Cµ,λ‖2‖q‖2 + ‖q‖∞︸ ︷︷ ︸

≤‖q‖2

max
i
|πi − λi |max

i
|H(λi )|‖Cλ,µ‖2‖p‖2

≤ ‖p‖2‖q‖2‖Cµ,λ‖2

[
max

i
|π − µi |max

i
|H(µi )| + max

i
|π − λi |max

i
|H(λi )|

]
,

since ‖Cµ,λ‖2 = ‖Cλ,µ‖2. Furthermore:

qr = (CT
λ,π)+er , pr = (CT

µ,π)+er .

Thus

‖dr‖2 ≤ ‖(CT
µ,π)+er‖2 ‖(CT

λ,π)+er‖2 ‖Cµ,λ ‖2 Kr,µ,λ

where Kr,µ,λ = max
i
|πr − µi | max

i
|H(µi )|+ max

i
|πr − λi |max

i
|H(λi )| .
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Hence, the upper bound of |δπ| corresponding to the perturbation of the pole πr is a product
of the following factors:

1. The absolute value of its corresponding residue γr .

2. the sensitivity (might be large depending on the selection/partition of sampling points).

3. the norm of the Cauchy matrix containing solely sampling points (could be large when
the points are very close to each other).

4. A constant Kr,µ,λ that depends on the sampling points and on the magnitude of the
original function evaluated and these points (not that large).
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Pseudospectra

• Consider A ∈ Cn×n, its ε-pseudospectrum is:

Λε(A) =
{

z ∈ C : ‖(zI− A)−1‖ ≥ ε−1
}

m

Λε(A) = { z ∈ C : z ∈ σ(A + ∆A) for some ∆A with ‖∆A‖ ≤ ε}

m

Λε(A) =
{

z ∈ C : σmin(zI− A) ≤ ε
}

• Given (A, E) ∈ Cn×n × Cn×n, and ε > 0, its ε− (γ, δ) pseudospectrum is:

σ
(γ,δ)
ε = {z ∈ C is an eigenvalue of the pencil z(E + ∆)− (A + Γ)

for some Γ, ∆ ∈ Cn×n with ‖Γ‖ ≤ εγ, ‖∆‖ ≤ εδ
}

m

σ
(γ,δ)
ε (A,E) =

{
z ∈ C : ‖(zE− A)−1‖ >

1
ε(γ + |z|δ)

}
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Example 1 (Embree-Ionita)

Consider a system with realization

A =

[
−1.1 1

1 −1.1

]
, B =

[
0
1

]
, C =

[
0 1

]
.

Sensitivities after taking measurements.

λ1 λ2 µ1 µ2 Sens (π1 = −0.1) Sens (π2 = −2.1)
0.00 1.00 0.00+1.00i 0.00-1.00i 2.416e−01 2.430e+01
0.25 0.75 0.00+2.00i 0.00-2.00i 1.695e+00 2.306e+01
0.40 0.60 0.00+4.00i 0.00-4.00i 5.132e+00 3.221e+01
8.00 9.00 10.00 11.00 3.828e+05 6.828e+05
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Example 2 (Embree-Ionita)

Consider a system with realization

A = diag (−1,−2, · · · ,−10), B =
[
1, 1, · · · , 1

]T
, C =

[
1, 1, · · · , 1

]
.

The sensitivities of the poles after taking measurements are:

λ µ Poles Sensitivity
-10.25 -9.75 -1.000 4.781e-02
-9.25 -8.75 -10.000 4.781e-02
-8.25 -7.75 -9.000 4.951e-02
-7.25 -6.75 -2.000 4.951e-02
-6.25 -5.75 -3.000 4.989e-02
-5.25 -4.75 -8.000 4.989e-02
-4.25 -3.75 -7.000 5.004e-02
-3.25 -2.75 -4.000 5.004e-02
-2.25 -1.75 -5.000 5.009e-02
-1.25 -0.75 -6.000 5.009e-02

λ µ Poles Sensitivity
-5.25 -10.25 -10.000 4.781e-02
-4.75 -9.75 -1.000 4.781e-02
-4.25 -9.25 -2.000 4.951e-02
-3.75 -8.75 -9.000 4.951e-02
-3.25 -8.25 -8.000 4.989e-02
-2.75 -7.75 -3.000 4.989e-02
-2.25 -7.25 -4.000 5.004e-02
-1.75 -6.75 -7.000 5.004e-02
-1.25 -6.25 -6.000 5.009e-02
-0.75 -5.75 -5.000 5.009e-02

Setting cond (Ls) cond (L) cond (Cλ,π) cond (Cµ,π)
1 1.0814e+01 1.4685e+00 1.2172e+00 1.2172e+00
2 2.2385e+06 1.0389e+06 1.7707e+06 1.7707e+06
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λ µ Poles Sensitivity
-5.00+0.50i -5.00+1.00i -5.000 1.375e+04
-5.00-0.50i -5.00-1.00i -4.000 1.721e+05
-5.00+1.50i -5.00+2.00i -6.000 3.873e+05
-5.00-1.50i -5.00-2.00i -3.000 2.544e+06
-5.00+2.50i -5.00+3.00i -1.000 3.549e+06
-5.00-2.50i -5.00-3.00i -2.000 8.533e+06
-5.00+3.50i -5.00+4.00i -7.000 1.385e+07
-5.00-3.50i -5.00-4.00i -10.000 7.884e+07
-5.00+4.50i -5.00+5.00i -8.000 1.365e+08
-5.00-4.50i -5.00-5.00i -9.000 2.875e+08

λ µ Poles Sensitivity
-5.00+0.50i -5.00-0.50i -5.000 1.676e+04
-5.00+1.00i -5.00-1.00i -4.000 1.923e+05
-5.00+1.50i -5.00-1.50i -5.999 5.598e+05
-5.00+2.00i -5.00-2.00i -2.998 2.703e+06
-5.00+2.50i -5.00-2.50i -0.999 3.620e+06
-5.00+3.00i -5.00-3.00i -1.996 8.864e+06
-5.00+3.50i -5.00-3.50i -6.972 2.778e+07
-5.00+4.00i -5.00-4.00i -9.942 3.203e+07
-5.00+4.50i -5.00-4.50i -8.722 1.607e+08
-5.00+5.00i -5.00-5.00i -7.769 2.048e+08

Setting cond (Ls) cond (L) cond (Cλ,s) cond (Cµ,s)

4 2.5548e+08 4.1502e+08 1.8096e+04 2.4538e+04
6 8.4840e+15 1.2067e+16 1.0403e+08 1.0403e+08

λ µ Poles Sensitivity
-2.50+1.00i -7.50+1.00i -1.000 3.836e+03
-2.50-1.00i -7.50-1.00i -2.000 1.553e+04
-2.50+2.00i -7.50+2.00i -10.000 5.356e+04
-2.50-2.00i -7.50-2.00i -3.000 5.755e+04
-2.50+3.00i -7.50+3.00i -8.000 1.741e+05
-2.50-3.00i -7.50-3.00i -9.000 2.093e+05
-2.50+4.00i -7.50+4.00i -7.000 2.383e+05
-2.50-4.00i -7.50-4.00i -4.000 3.306e+05
-2.50+5.00i -7.50+5.00i -6.000 6.402e+05
-2.50-5.00i -7.50-5.00i -5.000 7.879e+05

λ µ Poles Sensitivity
1.00 0.50 -1.000 2.745e+15
2.00 1.50 1.999 6.323e+15
3.00 2.50 -2.000 5.334e+17
4.00 3.50 -9.839 2.667e+18
5.00 4.50 -3.017 9.103e+18
6.00 5.50 -7.974 1.410e+19
7.00 6.50 -5.888 2.653e+19
8.00 7.50 -4.216 2.654e+19
9.00 8.50 1.054 7.516e+19

10.00 9.50 9.143 Inf

Setting cond (Ls) cond (L) cond (Cλ,s) cond (Cµ,s)

3 4.2868e+09 4.1407e+09 2.3458e+06 3.4688e+05
5 4.5784e+16 2.3000e+16 2.9699e+12 4.6013e+09
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λ µ Poles Sensitivity
1.00 1.00 -1.000 6.644e+11
2.00 2.00 -2.001 3.175e+14
3.00 3.00 -9.854 8.299e+15
4.00 4.00 -3.028 8.781e+15
5.00 5.00 -4.270 3.503e+16
6.00 6.00 -8.042 3.806e+16
7.00 7.00 -5.977 5.223e+16
8.00 8.00 2.164 6.988e+17
9.00 9.00 2.995 5.052e+18

10.00 10.00 2.825 8.028e+18
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Beam Example (SISO, order = 348)

The different setting of interpolation points are as follows.

Let ω = logspace (−2, 1, 500), ω1 = logspace (−2, 1, 200). Then

• Setting 1 (interlaced):
λ = {−ıω(1 : 2 : 500)} ∪ {ıω(1 : 2 : 500)}, µ = {−ıω(2 : 2 : 500)} ∪ {ıω(2 : 2 : 500)}

• Setting 2 (split): λ = {−ıω}, µ = {ıω}.

• Setting 3 (interlaced and shifted) is obtained from setting 1 by shifting the points:
λ = {3− ıω(1 : 2 : 500)} ∪ {3 + ıω(1 : 2 : 500)},
µ = {3− ıω(2 : 2 : 500)} ∪ {3 + ıω(2 : 2 : 500)}.

• Setting 4 (interlaced obtained from ω1):
λ = {−ıω1(1 : 2 : 200)}∪{ıω1(1 : 2 : 200)}, µ = {−ıω1(2 : 2 : 200)}∪{ıω1(2 : 2 : 200)}
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Poles Sensitivity
-0.005-0.105i 2.166e-03
-0.005+0.105i 2.166e-03
-0.007-0.569i 8.215e-03
-0.007+0.569i 8.215e-03
-0.014-1.369i 1.264e-01
-0.014+1.369i 1.264e-01
-0.032+2.305i 1.546e+00
-0.032-2.305i 1.546e+00
-0.066+3.352i 1.269e+01
-0.066-3.352i 1.269e+01
-1.705-9.222i 9.223e+02
-1.705+9.222i 9.223e+02

Poles Sensitivity
-0.005+0.105i 6.170e-03
-0.005-0.105i 6.170e-03
-0.007-0.569i 4.988e+00
-0.007+0.569i 4.988e+00
-0.014-1.372i 5.449e+02
-0.014+1.372i 5.449e+02
-0.091-2.361i 1.118e+04
-0.091+2.361i 1.118e+04
-0.919+7.723i 6.678e+04
-0.919-7.723i 6.678e+04
-0.255-3.751i 1.167e+05
-0.255+3.751i 1.167e+05

Poles Sensitivity
0.059-0.000i 1.734e+05
-0.660-7.986i 2.105e+05
-0.660+7.986i 2.105e+05
-0.423+0.000i 7.663e+05
-0.823-5.777i 2.545e+06
-0.823+5.777i 2.545e+06
1.556-3.498i 1.234e+07
1.556+3.498i 1.234e+07

-7.036-13.182i 2.125e+07
-7.036+13.182i 2.125e+07

-35.345+62.830i 4.317e+09
-35.345-62.830i 4.317e+09

Poles Sensitivity
-0.005-0.105i 4.748e-03
-0.005+0.105i 4.748e-03
-0.007-0.569i 2.691e-02
-0.007+0.569i 2.691e-02
-0.014+1.369i 9.268e-01
-0.014-1.369i 9.268e-01
-0.032-2.305i 5.709e+00
-0.032+2.305i 5.709e+00
-0.072+3.379i 4.479e+01
-0.072-3.379i 4.479e+01
-1.696-9.016i 1.545e+03
-1.696+9.016i 1.545e+03
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IRKA

Poles Sensitivity
-0.005-0.105i 1.049e-02
-0.005+0.105i 1.049e-02
-0.007+0.569i 1.839e-02
-0.007-0.569i 1.839e-02
-0.014-1.368i 1.274e-01
-0.014+1.368i 1.274e-01
-0.719+8.004i 3.838e+01
-0.719-8.004i 3.838e+01
-2.221-0.000i 8.695e+02

-7.269-13.763i 3.288e+03
-7.269+13.763i 3.288e+03
-60.652+0.000i 3.987e+04

Poles and Sensitivities of ROM con-
structed by IRKA
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Loewner System Constructed by Interpolation Points of ROMs
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Poles Sensitivity
-0.007+0.569i 1.577e+02
-0.007-0.569i 1.697e+02
-0.005+0.105i 2.449e+02
-0.005-0.105i 3.061e+02
-0.014+1.369i 1.378e+03
-0.014-1.369i 1.423e+03
-0.032+2.305i 1.137e+04
-0.032-2.305i 1.151e+04
-0.066+3.352i 1.319e+05
-0.066-3.352i 1.322e+05
-1.705-9.222i 3.850e+06
-1.705+9.222i 3.860e+06

Poles Sensitivity
-0.005-0.105i 2.661e+02
-0.005+0.105i 8.170e+02
-0.007-0.569i 2.314e+05
-0.007+0.569i 2.434e+05
-0.014-1.372i 8.155e+06
-0.014+1.372i 1.797e+07
-0.091-2.361i 3.302e+07
-0.091+2.361i 5.944e+07
-0.919-7.723i 1.263e+08
-0.919+7.723i 1.383e+08
-0.255-3.751i 3.079e+08
-0.255+3.751i 3.512e+08

Poles Sensitivity
0.059-0.000i 5.065e+12

-0.660+7.986i 5.180e+12
-0.660-7.986i 5.180e+12
-0.423+0.000i 2.113e+13
-0.823+5.777i 6.286e+13
-0.823-5.777i 6.286e+13

-7.036+13.182i 1.889e+14
-7.036-13.182i 1.889e+14
1.556+3.498i 3.739e+14
1.556-3.498i 3.739e+14

-35.345+62.830i 2.973e+15
-35.345-62.830i 2.973e+15

Poles Sensitivity
-0.007-0.569i 1.779e-01
-0.005-0.105i 2.215e-01
-0.005+0.105i 2.336e-01
-0.007+0.569i 2.354e-01
-0.014+1.369i 7.310e+00
-0.014-1.369i 8.774e+00
-0.032+2.305i 1.964e+01
-0.032-2.305i 2.175e+01
-0.072-3.379i 6.555e+02
-0.072+3.379i 6.648e+02
-1.696-9.016i 1.187e+04
-1.696+9.016i 1.223e+04

Poles and Sensitivities of Loewner system, setting 1-4 from left to right
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Balanced Truncation k = 12

Obtain ROM by balanced truncation. Then choose the zeros of error system as interpolation
points to construct the Loewner system.

Poles Sensitivity
-0.035-2.297i 1.388e+00
-0.015-1.368i 2.269e+00
-0.015+1.368i 3.443e+00
-0.007-0.569i 4.357e+00
-0.007+0.569i 4.362e+00
-0.035+2.297i 4.462e+00
-0.005-0.105i 7.556e+00
-0.005+0.105i 8.146e+00
-0.092-3.278i 7.115e+01
-0.092+3.278i 7.507e+02
-1.043-7.469i 1.290e+05
-1.043+7.469i 3.966e+05
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Pseudospectra

47 / 49



Pole Distribution of ROMs with perturbation on the measurements.
Below we show the poles of 10000 ROMs with perturbation on the measurements.
The first figure shows the pole distribution of ROMs with perturbation on the original
measurements. The second figure shows the pole distribution of ROMs with perturbation on
the ROM’s interpolation points.
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Dynamical systems are a principal tool in the modeling, prediction, and control of a wide 
range of complex phenomena. As the need for improved accuracy leads to larger and more 
complex dynamical systems, direct simulation often becomes the only available strategy for 
accurate prediction or control, inevitably creating a considerable burden on computational 
resources. This is the main context where one considers model reduction, seeking to replace 
large systems of coupled differential and algebraic equations that constitute high fidelity 
system models with substantially fewer equations that are crafted to control the loss of fidelity 
that order reduction may induce in the system response.

Interpolatory methods are among the most widely used model reduction techniques, and 
this textbook is the first comprehensive analysis of this approach available in a form readily 
accessible to practitioners.

Interpolatory Methods for Model Reduction
•	 provides a single, extensive resource for interpolatory model reduction techniques;
•	 contains state-of-the-art methods, which have matured significantly over the last two 

decades; and
•	 covers both classical projection frameworks for model reduction and data-driven, 

nonintrusive frameworks.

This textbook is appropriate for a wide audience of engineers and other scientists working in 
the general areas of large-scale dynamical systems and data-driven modeling of dynamics.
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